Bästa batteriet för IoT eller inbyggda system

Bästa batteriet för IoT eller inbyggda system

Batterival är inte helt enkelt när det kommer till denna typen av projekt. I detta fallet är dessutom vikt också en faktor vilket gör det ännu svårare.

Vissa enkortsdatorer går att strömförsörja direkt via GPIO-kontakterna, vissa behöver skydd- eller sidokretsar för att göra det möjligt (säkert).

I vårt fall kör vi med en, så liten som möjligt, powerbank och micro USB. På det sättet slipper vi ett till chip och är på den säkra sidan. Nackdelen är vikten, men då vi bara utvecklar en prototyp till att börja med så får det vara så. Det bästa hade varit om vi hade hittat en 1000 mAh powerbank med lägre vikt.

Tänk på att korten behöver säker och jämn strömförsörjning. Vissa kort klarar mer än andra men det är alltid bäst att vara på den säkra sidan.

Bilbana med AI, strömförsörjning

Bilbana med AI, strömförsörjning

Det finns flera saker att ta hänsyn till när det kommer till strömförsörjning.

  1. Störningar. Att separera de olika elektriska systemen/delarna.
  2. Pålitlighet. Med en isolerad källa kan man säkerställa strömförsörjningen till eventuell dator. Skulle den tappa spänning så är det stor risk att den stänger ner. Får datorn (eller andra komponenter) tillfälliga spikar så finns stor risk att de går sönder.
  3. Kontroll. Uppladdningsbara batterier och/eller batterier med indikatorer kan underlätta så man vet att ström är garanterad.
  4. Vikt. Batterier väger mycket och kommer påverka bilens prestanda mycket.

Vi har valt att ta ström till datorn från batteripack av en enkel anledning: mängden jobb. Batteriet väger mycket men vi slipper jobbet med att plocka ström från bilbanans krets. För vidare optimering kan detta sättet vara bättre dock.

Test av sensorer, ställdon

Test av sensorer, ställdon

För att förbereda mjukvaru-modulerna och samtidigt testa accesstider så konstruerades här ett enkelt test. Datorn togglar (slår på och av) en av GPIO-kontakterna ett antal gånger. Tidtagning görs i mjukvaran med Pythons egna tidsbibliotek. På andra sidan sitter en röd LED för att ’visa’ effekten. Tiderna till ställdonen (LED i detta fall, motorn i framtiden) var tillfredsställande låga.

Accesstid accelerometer, benchmarking

Accesstid accelerometer, benchmarking

För att resultatet ska bli så bra som möjligt så behöver AI-modellerna så mycket och aktuell data som möjligt. Detta sätter press på flera delar av projektet.

Här testas läshastigheten från givarna, i detta fallet: accelerometern. En tom while-loop kör, som väntat, 100 iterationer väldigt snabbt. Samma antal och while-loop fast med ett anrop till accelerometern tar 2.16 sekunder. Detta resultatet var konsekvent genom alla tester, där antalet iterationer ändrades.

Vi kan alltså få data från accelerometern ungefär 50 gånger / sekund (= 50 Hz). Det är inte jätte hög hastighet jämfört med andra accelerometrar på marknaden, men det sparar oss tid. Dessutom tror vi nog ändå att 50 Hz kommer vara tillräckligt.

Roll, pitch eller yaw?

Roll, pitch eller yaw?

Pitch är intressant då den ger utslag på hög acceleration och hård inbromsning. Eftersom det inte finns några backar i vår bana så behöver vi inte tänka på den aspekten. Dessutom så vet redan bilen om vilket gaspådrag den har, därför behöver vi inte läsa av pitch för att se krafterna runt den axeln.

Så vi avvaktar med pitch helt enkelt.

Att löda på kretskortet

Att löda på kretskortet

När du löder direkt på kortet gäller det att vara försiktig.

Skrapa alltid med en kniv på kortet om kontaktytan är platt på kortet. De flesta korten lackas och det är stor risk att även kontaktytan är lackad. Då finns det risk att tennet rinner runt bara. Det går också fint att ta bort ev. lack med medel, men var försiktig.

AI, enkelt eller smart?

AI, enkelt eller smart?

Inlägget är reklam för en produkt hos Kjell&Company och innehåller annonslänkar.

Att välja komponenter (oavsett område) kan vara svårt. Vi har målet att göra alla pusselbitar så enkla som möjligt till en början. Optimering kan vi göra senare.

Till exempel så valde vi Raspberry Pi Sense HAT för att det fanns färdiga API’er som vi kunde komma igång med snabbt och enkelt.

Raspberry Pi Sense HAT

Raspberry Pi Sense HAT

Inlägget är reklam för en produkt hos Kjell&Company och innehåller annonslänkar.

För att utveckla och träna modellen behövs någon typ av data. Det kan (teoretiskt sett) vara vilken data som helst men i vårt fall så har vi valt att börja med accelerometer och eventuellt kompass.

Raspberry PI Sense HAT har väldigt många olika sensorer och även en hel del LEDs. Vi har valt denna, trots sin storlek, för att få något som direkt kan kommunicera med Raspberry Pi Zero. Om storleken visar sig vara ett problem så löser vi det senare.

Bilbana med AI, handkontrollerna

Bilbana med AI, handkontrollerna

Handkontrollerna består av en potentiometer, ett ställbart motstånd.

Ju längre in knappen trycks desto mer fart får bilen. Denna bilbanan (eftersom den är ny) levererades med handkontroller som också hade mekaniska begränsningar. Man kunde alltså ställa in olika ’maxfarter’, detta för att barn ska kunna köra utan att köra av hela tiden. Dessa ignorerar vi helt och hållet.

Löda fast bandkabel

Löda fast bandkabel

Att använda bandkabel när det går är att rekommendera. Ledarna är väldigt mycket mer skyddade och det är lättare att hålla koll på de. Mindre risk för trassel och att de åker in i andra komponenter eller hjul och bråkar.

Det kan vara bra att, efter lödningen, fästa själva bandkabeln med lite häftmassa eller liknande för extra skydd. Detta gäller huvudsakligen under utveckling och testande av projektet.

Styra motor med Python

Styra motor med Python

När strömkällan (ofta batteri) och motorn är inkopplade i H-bryggan så saknas styrsignalerna. Dessa kommer, vanligtvis, från en enkortsdator. Här finns viss flexibilitet men det brukar behövas tre signaler. Två som tillsammans bestämmer riktningen på motorn och en tredje som bestämmer hastigheten. Denna utgörs av en PWM (Pulsbredds-modullering, på svenska). Här motsvarar en hög signal full gas och en låg signal ingen gas. Men för t. ex. 70%-ig gas så är signalen hög 70% av tiden och låg 30% av tiden.

Så ett exempel i Python3 skulle kunna vara (siffrorna är vilken GPIO-kontakt de är kopplade till):

directionOne = LED(1) directionTwo = LED(2) throttle = PWMLED(3)

def start(): directionOne.on() directionTwo.off() throttle.value = 0.7

« Till start